免费试用

中文化、本土化、云端化的在线跨平台软件开发工具,支持APP、电脑端、小程序、IOS免签等等

pytorch生成exe

PyTorch是一个开源的机器学习库,它为深度学习应用提供了丰富的API和工具。然而,将PyTorch模型转换为独立可执行文件(EXE)可能会有很多好处,例如便于部署、加速实际应用等。本教程将向您说明如何将PyTorch模型转换为EXE文件。

### 需要安装的库

- PyTorch

- torchvision

- torchsummary

- 依赖库:NumPy, Matplotlib

- PyInstaller

请确保已通过`pip`安装了这些库。

### 1.创建用于测试的PyTorch模型

在此教程中,我们使用一个简单的卷积神经网络(CNN)鉴别MNIST数据集中的手写数字。

创建一个新的Python文件,命名为`mnist_cnn.py`,并输入以下代码:

```python

import torch

import torch.nn as nn

import torch.optim as optim

import torchvision

import torchvision.transforms as transforms

import torchsummary

# 1. Define the CNN Model

class MnistCNN(nn.Module):

def __init__(self):

super(MnistCNN, self).__init__()

self.conv1 = nn.Conv2d(1, 32, 3)

self.pool1 = nn.MaxPool2d(2, 2)

self.conv2 = nn.Conv2d(32, 64, 3)

self.pool2 = nn.MaxPool2d(2, 2)

self.dropout1 = nn.Dropout(0.25)

self.fc1 = nn.Linear(64 * 6 * 6, 128)

self.dropout2 = nn.Dropout(0.5)

self.fc2 = nn.Linear(128, 10)

def forward(self, x):

x = self.pool1(F.relu(self.conv1(x)))

x = self.pool2(F.relu(self.conv2(x)))

x = x.view(-1, 64 * 6 * 6)

x = self.dropout1(x)

x = F.relu(self.fc1(x))

x = self.dropout2(x)

x = self.fc2(x)

return x

# 2. Load the MNIST dataset

transform = transforms.Compose([

transforms.ToTensor(),

transforms.Normalize((0.1307,), (0.3081,))])

trainset = torchvision.datasets.MNIST(root='./data', train=True,

download=True, transform=transform)

trainloader = torch.utils.data.DataLoader(trainset, batch_size=100,

shuffle=True, num_workers=2)

testset = torchvision.datasets.MNIST(root='./data', train=False,

download=True, transform=transform)

testloader = torch.utils.data.DataLoader(testset, batch_size=100,

shuffle=False, num_workers=2)

# 3. Train the model

def train(model, device, train_loader, optimizer, epoch):

model.train()

for batch_idx, (data, target) in enumerate(train_loader):

data, target = data.to(device), target.to(device)

optimizer.zero_grad()

output = model(data)

loss = F.cross_entropy(output, target)

loss.backward()

optimizer.step()

def main():

model = MnistCNN().to("cpu")

optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)

for epoch in range(1, 6):

print("Epoch: {}".format(epoch))

train(model, "cpu", trainloader, optimizer, epoch)

torch.save(model.state_dict(), "mnist_cnn.pth")

if __name__ == '__main__':

main()

```

这段代码定义了一个简单的CNN模型,加载MNIST数据集并对模型进行了训练。如果你想要跳过训练步骤,直接使用预训练好的模型。你也可以使用你自己的模型以及权重。

### 2.创建一个用于预测的脚本

接下来,我们需要创建一个脚本来加载训练好的权重并运行预测。在本例中,我们使用单图像进行预测。创建一个新的Python文件,命名为`predict.py`,并输入以下代码:

```python

import torch

import torch.nn as nn

from mnist_cnn import MnistCNN

import numpy as np

from PIL import Image

def predict(image_file):

model = MnistCNN()

model.load_state_dict(torch.load("mnist_cnn.pth", map_location=torch.device("cpu")))

model.eval()

img = Image.open(image_file)

img = img.resize((28, 28)).convert("L")

img = np.asarray(img, dtype=np.float32)[np.newaxis, np.newaxis, :]

img = (img - 0.1307) / 0.3081

output = model(torch.from_numpy(img))

_, predicted = torch.max(output, 1)

print("Predicted Label: ", predicted.item())

if __name__ == "__main__":

import sys

if len(sys.argv) != 2:

print("USAGE: python predict.py path/to/image")

else:

predict(sys.argv[1])

```

此脚本会使用`mnist_cnn.py`中定义的CNN模型。现在我们可以使用预测脚本来识别MNIST数据集中的图像。

### 3.将PyTorch模型转换为EXE文件

接下来,我们将使用PyInstaller将预测脚本转换为可执行文件。请确保已通过`pip`安装了PyInstaller。

打开终端,输入如下命令:

```

pyinstaller predict.py --onefile

```

PyInstaller会将所有依赖项捆绑在一个可执行文件中。生成的EXE文件可以在`dist`目录下找到。

### 4.使用EXE文件进行预测

最后,将训练好的权重文件(`mnist_cnn.pth`)复制到生成的可执行文件的目录下。现在,您可以通过以下命令使用EXE文件进行预测:

```

./predict.exe path/to/image

```

这就是如何将PyTorch模型转换为EXE文件的方法。注意,生成的EXE文件可能会比你预期的更大,因为它包含了所有依赖库。如有需要,可以使用UPX等工具进行文件压缩。


相关知识:
vc做好的exe文件
在本文中,我们将详细介绍使用Visual C++(VC++,简称为VC)开发工具编译生成可执行文件(EXE文件)的原理及其详细过程。VC++是Microsoft公司推出的C++集成开发环境,广泛应用于Windows平台的软件开发。1. 原理概述当我们使用V
2023-06-14
qml如何生成exe文件
QML是Qt的一种声明式语言,用于创建用户界面。要将QML项目生成为可执行的EXE文件,需要构建一个与你的QML代码一起运行的C++应用。这篇文章将介绍如何将QML项目生成为可执行的EXE文件,以及所需的工具和库。**前提条件**需要具备以下环境和工具:1
2023-06-14
py文件生成可执行exe
在本教程中,我们将学习如何将Python脚本(py)文件转换成可执行文件(EXE)。将Python脚本转换为EXE文件的过程称为*打包*、*封装*或*编译*。这样的操作将允许非Python用户在他们的计算机上轻松运行你的Python应用程序,而无需安装Py
2023-06-14
python将项目做成exe文件
在本教程中,我们将讨论如何将Python项目转换为独立的可执行文件(exe文件)。我们将详细介绍在Windows操作系统中完成此操作的方法、原理和所需工具。将Python项目转换为exe文件是向终端用户发布Python程序的最佳方法,因为他们无需安装Pyt
2023-06-14
python 封装exe 界面
在本教程中,我将介绍如何使用 Python 将程序封装成一个具有图形界面(GUI)的 .exe 可执行文件。这对于让使用者更轻松地运行你的应用程序或工具非常有帮助,因为它使得程序具有更直观的界面,无需在命令行中运行。本教程将分为以下几个部分进行:1. 创建
2023-06-14
go项目打包exe
## Go项目打包成可执行文件(EXE)Go是一种编程语言,它出色的性能及跨平台特性优势让许多开发人员愿意使用Go语言来构建各种应用程序。在某些场景下,我们需要将Go项目打包成可执行文件(EXE),以便在没有安装Go环境的计算机上执行。本教程将详细介绍如何
2023-06-14